Bislang war es nicht möglich, die dynamischen Vorgänge im flimmernden Herzmuskel sichtbar zu machen. Nun zeigt erstmals ein internationales Forscherteam um Jan Christoph und Stefan Luther vom Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS) sowie Gerd Hasenfuß vom Herzzentrum der Universitätsmedizin Göttingen (HZG), wie wirbelartige rotierende Kontraktionen, die dem lebensbedrohlichen Herzflimmern zugrunde liegen, im Inneren des Herzens beobachtet werden können. Sie verwenden dafür ein neues bildgebendes Verfahren, für das in der Medizin etablierte Ultraschall-Geräte eingesetzt werden können. So können Ärzte Herzrhythmusstörungen, aber auch andere Erkrankungen des Herzens künftig besser untersuchen und neue Behandlungsmethoden entwickeln.
Wenn der Herzmuskel nicht mehr koordiniert kontrahiert, sondern nur noch flimmert, wird es lebensgefährlich. Mediziner sprechen von einer Fibrillation. Zucken dabei die Hauptkammern des Herzens auf diese ungeordnete Weise, gibt es nur eine Rettung: Der Herzmuskel muss innerhalb weniger Minuten mit einem starken Stromstoß defibrilliert werden, der sehr schmerzhaft ist und das Herzgewebe schädigen kann. Ein Flimmern im Vorhof hingegen führt zwar nicht unmittelbar zum Tod, kann jedoch unbehandelt fatale Folgen haben. „Der Schlüssel zu einem besseren Verständnis der Fibrillation liegt in einer neuen hochauflösenden Bildgebung, mit der sich die Vorgänge auch im Inneren des Herzmuskels beobachten lassen“, sagt Stefan Luther, Leiter der Forschungsgruppe „Biomedizinische Physik“ am MPIDS und Professor an der Universitätsmedizin Göttingen.
„Die mechanische Bewegung des Herzmuskels in der Fibrillation ist hoch-komplex, aber sie ist gleichzeitig auch sehr charakteristisch – fast so wie ein Fingerabdruck der Fibrillation“, sagt Jan Christoph, Forscher am MPIDS sowie am Deutschen Zentrum für Herz-Kreislauf-Forschung in Göttingen und Hauptautor der Studie. Gemeinsam mit Stefan Luther und einem internationalen Team von Forschern stellt der Physiker jetzt eine diagnostische Methode vor, mit der sich das Flimmern des Herzmuskels mit einem gängigen Ultraschallgerät zeitaufgelöst in drei Dimensionen und damit viel genauer untersuchen lässt, als dies im Patienten bisher möglich war.
Die neue diagnostische Methode wird helfen, die Therapie von Kammerflimmern und möglicherweise auch vom Vorhofflimmern effektiver zu gestalten. So dürfte das bessere Verständnis der Fibrillation, das sich mit dem Verfahren erzielen lässt, dazu beitragen, die Entwicklung der Niedrigenergie-Defibrillation voranzutreiben. Dabei sollen schwächere, aber viel gezieltere Stromstöße das Kammerflimmern beenden als bei der heute üblichen, sehr schmerzhaften Defibrillation mit hochenergetischen Elektroschocks. Mit der neuen Form der Ultraschalldiagnostik können Mediziner herausfinden, wie sie die Stromstöße mit niedrigerer Energie setzen müssen, um das Herz wieder in den Takt zu bringen…
Um die zitternden Bewegungen im Inneren des Herzmuskels in drei Dimensionen darzustellen und mit der elektrischen Erregung des Herzens in Verbindung zu set-zen, entwickelten die Forscher neue hoch-auflösende Ultraschall-Messverfahren. Sie konnten auch nachweisen, dass diese Methoden in hochleistungsfähigen Ultraschallgeräten eingesetzt werden können, die bereits in vielen kardiologischen Einrichtungen routinemäßig genutzt werden. Indem sie die Bilddaten der Muskelkontraktionen analysierten, konnten sie in einem flimmernden Herzen genau verfolgen, wie sich Bereiche von kontrahierten und entspannten Muskelzellen wirbelförmig durch den Herzmuskel bewegen. Sie beobachteten dabei auch filamentartige Strukturen, die Physikern bisher nur in der Theorie und aus Computer-Simulationen bekannt waren. Eine solche filamentartige Struktur ähnelt einem Faden und markiert das Auge des Wirbelsturms, der sich durch den Herzmuskel bewegt. Die Zentren der Wirbel im Inneren des Muskels zu lokalisieren, ist jetzt erstmals möglich…
Laut den Göttinger Forschern hat die Ultraschalltechnik gerade in den letzten Jahren mit Hinblick auf Bildqualität und Aufnahmegeschwindigkeiten eine gewaltige Weiterentwicklung erlebt – das Potential moderner Ultraschalltechnik ist bislang noch nicht voll ausgeschöpft.
Herzrhythmusstörung
Herzmuskelerkrankung